MSK
 M.S KENNEDY CORP.
 HIGH POWER OP-AMP

FEATURES:

- Available as SMD \#5962-8508801
- High Output Current - 2 Amps Peak
- Low Power Consumption-Class C Design
- Programmable Current Limit
- High Slew Rate
- Continuous Output Short Circuit Duration
- Replacement for LH0021

DESCRIPTION:

MSK0021FPG
The MSK 0021, 0021FP and 0021FPG are general purpose Class C power operational amplifiers. These amplifiers offer large output currents, making them an excellent low cost choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK 0021 is available in a hermetically sealed 8 pin TO-3 package. The MSK 0021FP is packaged in a 20 pin hermetic metal flatpack and the 0021 FPG is lead formed by MSK.

EQUIVALENT SCHEMATIC

PIN-OUT INFORMATION

TYPICAL APPLICATIONS

- Servo Amplifer - Audio Amplifier
- Motor Driver • Programmable Power Supply

MSK0021

1 ISC+
2 +VCC
3 GND
4 Compensation
5 -Input
6 + Input
7 -VCC
8 -ISC
CASE-OUTPUT

MSK0021FP/MSK0021FPG

1	ISC-	$20-$ VCC
2	ISC-	19 NC
3	ISC-	$18+$ VIN
4	VOUT	17 NC
5	VOUT	$16-\mathrm{VIN}$
6	VOUT	15 NC
7	VOUT	14 Compensation
8	ISC +	13 NC
9	ISC +	12 GND
10	ISC +	$11+$ VCC
CASE IS ALSO VOUT		

ABSOLUTE MAXIMUM RATINGS

(8)

\pm Vcc	Supply Voltage	$\pm 18 \mathrm{~V}$	Tst	Storage Temperature Range	-65° to $+150^{\circ} \mathrm{C}$
lout	Peak Output Current	2A	Tld	Lead Temperature Range	$300^{\circ} \mathrm{C}$
Vin	Differential Input Voltage	$\pm 30 \mathrm{~V}$		(10 Seconds)	
Vin	Common Mode Input Voltage	$\pm 15 \mathrm{~V}$	Pd	Power Dissipation (TO-3)	6W
RTH	Thermal Resistance-Junction to Case		TJ	Junction Temperature	$150^{\circ} \mathrm{C}$
	MSK 0021	$2.0^{\circ} \mathrm{C} / \mathrm{W}$	Tc	Case Operating Temperature Range	
	MSK 0021FP/FPG	$6.0^{\circ} \mathrm{C} / \mathrm{W}$		Military Versions (H/B/E)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
				Industrial Versions . .	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions	Group A Subgroup	Military (5)			Industrial (4)			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
STATIC									
Supply Voltage Range (2)		-	± 12	± 15	± 18	± 12	± 15	± 18	V
Quiescent Current	$\mathrm{VIN}=0 \mathrm{~V}$	1, 2, 3	-	± 1.0	± 3.5	-	± 1.0	± 4.0	mA
Power Consumption (2)	$\mathrm{VIN}=0 \mathrm{~V}$	1,2,3	-	75	105	-	90	120	mW
INPUT									
Input Offset Voltage	$\mathrm{VIN}=0 \mathrm{~V}$	1	-	± 0.5	± 3.0	-	± 0.5	± 5.0	mV
		2,3	-	± 2.0	± 5.0	-	-	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{VCM}=\mathrm{OV}$ Either Input	1	-	± 100	± 300	-	± 150	± 500	nA
		2, 3	-	± 0.4	± 1.0	-	-	-	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{Vcm}=0 \mathrm{~V}$	1	-	± 2.0	± 100	-	± 2.0	± 300	nA
		2,3	-	-	± 300	-	-	-	nA
Input Capacitance (3)	$\mathrm{F}=\mathrm{DC}$	-	-	3	-	-	3	-	pF
Input Resistance (2)	$\mathrm{F}=\mathrm{DC}$	-	0.3	1.0	-	0.3	1.0	-	$\mathrm{M} \Omega$
Common Mode Rejection Ratio $\mathrm{F}=10 \mathrm{~Hz} \mathrm{Vcm}= \pm 10 \mathrm{~V}$		4	70	90	-	70	90	-	dB
		5,6	70	90	-	-	-	-	dB
Power Supply Rejection Ratio $\mathrm{Vcc}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		1	80	95	-	80	95	-	dB
		2,3	80	-	-	-	-	-	dB
Input Noise Voltage (3)	$\mathrm{F}=10 \mathrm{~Hz}$ to 10 KHz	-	-	5	-	-	5	-	$\mu \mathrm{V}$ RMS
OUTPUT									
Output Voltage Swing	$\mathrm{RL}=100 \Omega \mathrm{~F}=100 \mathrm{~Hz}$	4	± 13.5	± 14	-	± 13.0	± 14	-	V
		5,6	± 13.5	± 14	-	-	-	-	V
	$\mathrm{RL}=10 \Omega \quad \mathrm{~F}=100 \mathrm{~Hz}$	4	± 11	± 12	-	± 10.5	± 12	-	V
Output Short Circuit Current	Rsc $=0.5 \Omega$ Vout $=$ MAX	4	0.8	1.2	1.6	0.7	1.2	1.7	A
	$\mathrm{Rsc}=5 \Omega$ Vout $=$ GND	4	50	150	250	50	150	250	mA
Settling Time (3)	0.1\% 2V step	-	-	4	-	-	4	-	$\mu \mathrm{S}$
TRANSFER CHARACTERISTICS									
Slew Rate	Vout $= \pm 10 \mathrm{~V} \quad \mathrm{RL}=100 \Omega$	4	1.5	3.0	-	1.2	3.0	-	$\mathrm{V} / \mu \mathrm{S}$
Open Loop Voltage Gain	$\mathrm{F}=10 \mathrm{~Hz} \quad \mathrm{RL}=1 \mathrm{~K} \Omega$	4	100	105	-	100	105	-	dB
		5,6	88	96	-	-	-	-	dB
Transition Times	Rise and Fall	4	-	0.3	1.0	-	0.3	1.2	$\mu \mathrm{S}$
Overshoot	Small Signal	4	-	5	20	-	5	20	\%

NOTES:

(1) Unless otherwise specified, $\pm \mathrm{Vcc}= \pm 15 \mathrm{~V}, \mathrm{Cc}=3000 \mathrm{pF}$.
(2) Guaranteed by design but not tested.
(3) Typical parameters are representative of actual device performance but are for reference only.
(4) Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.
(5) Military grade devices (B/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4 .

$$
\begin{array}{ll}
\text { Subgroup 1, 4 } & \mathrm{TA}=\mathrm{TC}=+25^{\circ} \mathrm{C} \\
\text { Subgroup 2, } 5 & \mathrm{TA}=\mathrm{TC}=+125^{\circ} \mathrm{C} \\
\text { Subgroup 3,6 } & \mathrm{TA}_{\mathrm{C}}=\mathrm{TC}=-55^{\circ} \mathrm{C}
\end{array}
$$

(6) Reference DSCC SMD 5962-8508801 for electrical specifications for devices purchased as such.
(7) Subgroup 5 and 6 testing available upon request.
(8) Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.

APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

Governing Equation:

$$
T J=P D X(R \theta J C+R \theta C S+R \theta S A)+T_{A}
$$

Where

TJ	$=$ Junction Temperature
PD	$=$ Total Power Dissipation
RөJC	$=$ Junction to Case Thermal Resistance
RөCs	$=$ Case to Heat Sink Thermal Resistance
RөSA	$=$ Heat Sink to Ambient Thermal Resistance
Tc	$=$ Case Temperature
TA	$=$ Ambient Temperature
Ts	$=$ Sink Temperature

Example: (TO-3 PACKAGE)

In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 10 ohm load for 1 amp of output current. For a worst case analysis we will treat the 1 amp peak output current as a D.C. output current. The power supplies are ± 15 VDC.
1.) Find Power Dissipation

$$
\begin{aligned}
\mathrm{PD} & =[(\text { quiescent current }) \mathrm{X}(+\mathrm{Vcc}-(\mathrm{Vcc}))]+[(\mathrm{Vs}-\mathrm{Vo}) \mathrm{X} \text { lout }] \\
& =(3.5 \mathrm{~mA}) \times(30 \mathrm{~V})+(5 \mathrm{~V}) \times(1 \mathrm{~A}) \\
& =0.1 \mathrm{~W}+6 \mathrm{~W} \\
& =6.1 \mathrm{~W}
\end{aligned}
$$

2.) For conservative design, set $\mathrm{TJ}=+150^{\circ} \mathrm{C}$.
3.) For this example, worst case $\mathrm{TA}=+25^{\circ} \mathrm{C}$.
4.) RөJc $=2.0^{\circ} \mathrm{C} / \mathrm{W}$ typically for the TO-3 package.
5.) Rearrange governing equation to solve for ResA:

$$
\begin{aligned}
\text { ReSA } & =(\mathrm{TJ}-\mathrm{TA}) / \mathrm{PD}-(\text { ReJc })-(\text { Recs }) \\
& =\left(150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 6.1 \mathrm{~W}-\left(2.0^{\circ} \mathrm{C} / \mathrm{W}\right)-\left(0.15^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =18.5^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

The heat sink in this example must have a thermal resistance of no more than $18.5^{\circ} \mathrm{C} / \mathrm{W}$ to maintain a junction temperature of less than $+150^{\circ} \mathrm{C}$.

CURRENT LIMIT

The MSK 0021 has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

$$
\mathrm{Rsc}=\frac{0.7}{\mathrm{Isc}}
$$

Current Limit Connection

See "Application Circuits" in this data sheet for additional information on current limit connections.

POWER SUPPLY BYPASSING

Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. It is also a good practice with high power op-amps, such as the MSK 0021, to place a 30-50 microfarad capacitor with a low effective series resistance, in parallel with the other two power supply decoupling capacitors. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.

SAFE OPERATING AREA

The safe operating area curve is a graphical representation of the power handling capability of the amplifier under various conditions. The wire bond current carrying capability, transistor junction temperature and secondary breakdown limitations are all incorporated into the safe operating area curves. All applications should be checked against the S.O.A. curves to ensure high M.T.B.F.

APPLICATION CIRCUITS

CRT DEFLECTION YOKE DRIVER

UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING

OFFSET VOLTAGE NULL CIRCUIT

DC SERVO AMPLIFIER

NON SYMMETRICAL SUPPLIES

TYPICAL PERFORMANCE CURVES

SHORT CIRCUIT CURRENT vs. TEMPERATURE MSK0021

LARGE SIGNAL FREQUENCY RESPONSE

WEIGHT $=14$ GRAMS TYPICAL
NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021	Industrial
MSK 0021 B	MIL-PRF-38534 CLASS H
MSK 0021 E	EXTENDED RELIABILITY
$5962-8508801 \mathrm{X}$	DSCC - SMD

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED.
ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021FP	Industrial
MSK 0021FP H	MIL-PRF-38534 CLASS H
MSK 0021FP E	EXTENDED RELIABILITY
TBD	DSCC - SMD

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED.
ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021FPG	Industrial
MSK 0021FPG H	MIL-PRF-38534 CLASS H
MSK 0021FPG E	EXTENDED RELIABILITY
TBD	DSCC - SMD

M.S. Kennedy Corp.

4707 Dey Road, Liverpool, New York 13088
Phone (315) 701-6751
Fax (315) 701-6752
www.mskennedy.com

